5-2. Reduced Mass of the Molecule

If we recall that w = (k/m)'/?, we see that the coefficient of the first term is kA%/2, so
that the total energy becomes

2
E = - (sin® wt 4 cos® wt)

_ka

5 (5.15)

Thus, we see that the total energy is a constant and, in particular, is equal to the potential
energy at its largest displacement, where the kinetic energy is zero. Figure 5.3 shows
how the total energy is distributed between the kinetic energy and the potential energy.
Each oscillates in time between zero and its maximum value but in such a way that
their sum is always a constant. We say that the total energy is conserved and that the
system is a conservative system.

5-2. The Equation for a Harmonic-Oscillator Model of a Diatomic
Molecule Contains the Reduced Mass of the Molecule

The simple harmonic oscillator is a good model for a vibrating diatomic molecule. A
diatomic molecule, however, does not look like the system pictured in Figure 5.1 but
more like two masses connected by a spring as in Figure 5.4. In this case we have two
equations of motion, one for each mass:

d’x,
mlF =k(x2—x1 —ZO) (516)
and
de2
m, e =—k(x, —x, = 1) (5.17)
A
m, m,
> x -
FIGURE 5.4

Two masses connected by a spring, which is a model used to describe the vibrational motion of
a diatomic molecule.
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where /; is the undistorted length of the spring. Note that if x, — x, > [, the spring is
stretched and the force on mass m, is toward the right and that on mass m, is toward the
left. This is why the force term in Equation 5.16 is positive and that in Equation 5.17
is negative. Note also that the force on m | is equal and opposite to the force on m,, as
it should be according to Newton’s third law, action and reaction.

If we add Equations 5.16 and 5.17, we find that

2
F(mlx1 +m,x,) =0 (5.18)
This form suggests that we introduce a center-of-mass coordinate

mx, +m,x,

X = 5.19
7 (5.19)
where M = m, 4 m,, so that we can write Equation 5.18 in the form
X =0 (5.20)
dri* '

There is no force term here, so Equation 5.20 shows that the center of mass moves
uniformly in time with a constant momentum.

The motion of the two-mass or two-body system in Figure 5.4 must depend upon
only the relative separation of the two masses, or upon the relative coordinate

x=x,—-x —1 (5.21)

If we divide Equation 5.17 by m, and then subtract Equation 5.16 divided by m, we
find that

2 2
% - Cfitle = ——n—I:—z()c2 —x, — 1) — mil()c2 —x,—1)
or
g 11
7 s(x, — x,) = —k (m_1 + 2) (x, —x, = 1)
If we let

1 l_ml—i—mz_l

1 My mm, H

and introduce x = x, — x, — I, from Equation 5.21, then we have
TX k=0 (5.22)
— 4 kx = .
Har

The quantity p that we have defined is called the reduced mass.



5-3. Expansion of an [nternuclear Potential Around its Minimum

Equation 5.22 is an important result with a nice physical interpretation. If we
compare Equation 5.22 with Equation 5.3, we see that Equation 5.22 is the same
except for the substitution of the reduced mass p. Thus, the two-body system in
Figure 5.4 can be treated as easily as the one-body problem in Figure 5.1 by using
the reduced mass of the two-body system. In particular, the motion of the system is
governed by Equation 5.6 but with w = (k/u)"/?. Generally, if the potential energy
relative coordinates such as x, — x; and reduce a two-body problem to a one-body
problem. This important and useful theorem of classical mechanics is discussed in

Problems 5-5 and 5-6.
/

5-3. The Harmonic-Oscillator Approximation Results from the
Expansion of an Internuclear Potential Around its Minimum

Before we discuss the quantum-mechanical treatment of a harmonic oscillator, we
should discuss how good an approximation it is for a vibrating diatomic molecule.
The internuclear potential for a diatomic molecule is illustrated by the solid line in
Figure 5.5. Notice that the curve rises steeply to the left of the minimum, indicating
the difficulty of pushing the two nuclei closer together. The curve to the right side of
the equilibrium position rises intially but eventually levels off. The potential energy at
large separations is essentially the bond energy. The dashed line shows the potential
%k(l — lo)2 associated with Hooke’s law. Although the harmonic-oscillator potential
may appear to be a terrible approximation to the experimental curve, note that it
is, indeed, a good approximation in the region of the minimum. This region is the

Energy

FIGURE 5.5

A comparison of the harmonic oscillator potential (k(/ — lo)2 /2; dashed line) with the complete
internuclear potential (solid line) of a diatomic molecule. The harmonic oscillator potential is a
satisfactory approximation at small displacements.
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